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A quantitative and practical Bayesian framework is described for learn- 
ing of mappings in feedforward networks. The framework makes 
possible (1) objective comparisons between solutions using alternative 
network architectures, (2) objective stopping rules for network prun- 
ing or growing procedures, (3) objective choice of magnitude and type 
of weight decay terms or additive regularizers (for penalizing large 
weights, etc.), (4) a measure of the effective number of well-determined 
parameters in a model, (5) quantified estimates of the error bars on net- 
work parameters and on network output, and (6) objective comparisons 
with alternative learning and interpolation models such as splines and 
radial basis functions. The Bayesian “evidence” automatically embod- 
ies ”Occam’s razor,’’ penalizing overflexible and overcomplex models. 
The Bayesian approach helps detect poor underlying assumptions in 
learning models. For learning models well matched to a problem, a 
good correlation between generalization ability and the Bayesian evi- 
dence is obtained. 

This paper makes use of the Bayesian framework for regularization and 
model comparison described in the companion paper “Bayesian Inter- 
polation” (MacKay 1992a). This framework is due to Gull and Skilling 
(Gull 1989). 

1 The Gaps in Backprop 

There are many knobs on the black box of “backprop” [learning by back- 
propagation of errors (Rumelhart et al. 198611. Generally these knobs are 
set by rules of thumb, trial and error, and the use of reserved test data 
to assess generalization ability (or more sophisticated cross-validation). 
The knobs fall into two classes: (1) parameters that change the effective 
learning model, for example, number of hidden units, and weight decay 

‘Present address: Darwin College, Cambridge CB3 9EU, U.K. 

Neural Computation 4,448-472 (1992) @ 1992 Massachusetts Institute of Technology 



Bayesian Framework for Backpropagation Networks 449 

terms; and (2) parameters concerned with function optimization tech- 
nique, for example, "momentum" terms. This paper is concerned with 
making objective the choice of the parameters in the first class, and with 
ranking alternative solutions to a learning problem in a way that makes 
full use of all the available data. Bayesian techniques will be described 
that are both theoretically well-founded and practically implementable. 

Let us review the basic framework for learning in networks, then 
discuss the points at which objective techniques are needed. The training 
set for the mapping to be learned is a set of input-target pairs D = 
{xm, t"}, where rn is a label running over the pairs. A neural network 
architecture A is invented, consisting of a specification of the number of 
layers, the number of units in each layer, the type of activation function 
performed by each unit, and the available connections between the units. 
If a set of values w is assigned to the connections in the network, the 
network defines a mapping y(x; w, A) from the input activities x to the 
output activities y.' The distance of this mapping to the training set is 
measured by some error function; for example, the error for the entire 
data set is commonly taken to be 

1 
ED(D 1 W, d) = C 2 [Y(X"; W, d) - t"]' (1.1) 

The task of "learning" is to find a set of connections w that gives a 
mapping that fits the training set well, that is, has small error ED; it is 
also hoped that the learned connections will "generalize" well to new 
examples. Plain backpropagation learns by performing gradient descent 
on ED in w-space. Modifications include the addition of a "momentum" 
term, and the inclusion of noise in the descent process. More efficient 
optimization techniques may also be used, such as conjugate gradients 
or variable metric methods. This paper will not discuss computational 
modifications concerned only with speeding the optimization. It will 
address, however, those modifications to the plain backprop algorithm 
that implicitly or explicitly modify the objective function, with decay 
terms or regularizers. 

It is moderately common for extra regularizing terms Ew(w) to be 
added to ED; for example, terms that penalize large weights may be 
introduced, in the hope of achieving a smoother or simpler mapping 
(Hinton and Sejnowski 1986; Ji etal. 1990; Nowlan 1991; Rumelhart 1987; 
Weigend et al. 1991). Some of the "hints" in Abu-Mostafa (1990b) also 
fall into the category of additive weight-dependent energies. A sample 
weight energy term is 

m 

i L  

'The framework developed in this paper will apply not only to networks composed 
of "neurons," but to any regression model for which we can compute the derivatives 
of the outputs with respect to the parameters, *(x;w,d)/dw. 
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The weight energy may be implicit, for example, “weight decay” (sub- 
traction of a multiple of w in the weight change rule) corresponds to 
the energy in equation 1.2. Gradient-based optimization is then used to 
minimize the combined function: 

M = @E~(w I d) + PED(D I W, d) (1.3) 

where a and P are “black box” parameters. 
The constant cy. should not be confused with the ”momentum” pa- 

rameter sometimes introduced into backprop; in the present context a 
is a decay rate or regularizing constant. Also note that a should not be 
viewed as causing ”forgetting”; E D  is defined as the error on the entire 
data set, so gradient descent on M treats all data points equally irrespec- 
tive of the order in which they were acquired. 

1.1 What Is Lacking. The above procedures include a host of free 
parameters such as the choice of neural network architecture, and of the 
regularizing constant a. There are not yet established ways of objectively 
setting these parameters, though there are many rules of thumb (see Ji et 
al. 1990; Weigend et al. 1991, for examples). 

One popular way of comparing networks trained with different pa- 
rameter values is to assess their performance by measuring the error on 
an unseen test set or by similar cross-validation techniques. The data are 
divided into two sets, a training set that is used to optimize the param- 
eters w of the network, and a test set that is used to optimize control 
parameters such as a and the architecture A. However, the utility of 
these techniques in determining values for the parameters a and /3 or 
for comparing alternative network solutions, etc., is limited because a 
large test set may be needed to reduce the signal-to-noise ratio in the test 
error, and cross-validation is computationally demanding. Furthermore, 
if there are several parameters such as a and p, it is out of the question 
to optimize such parameters by repeating the learning with all possible 
values of these parameters and using a test set. Such parameters must 
be optimized on line. 

It is, therefore, interesting to study objective criteria for setting free 
parameters and comparing alternative solutions, that depend only on 
the data set used for the training. Such criteria will prove especially 
important in applications where the total amount of data is limited, so 
that one does not want to sacrifice good data for use as a test set. Rather, 
we wish to find a way to use all our data in the process of optimizing the 
parameters w and in the process of optimizing control parameters such 
as a and A. 

This paper will describe practical Bayesian methods for filling the 
following holes in the neural network framework just described: 

1. Objective criteria for comparing alternative neural network solutions, in 
particular with different architectures A. Given a single architecture 
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A, there may be more than one minimum of the objective function 
M .  If there is a large disparity in M between the minima then it is 
plausible to choose the solution with smallest M .  But where the dif- 
ference is not so great it is desirable to be able to assign an objective 
preference to the alternatives. It is also desirable to be able to assign 
preferences to neural network solutions using different numbers of 
hidden units, and different activation functions. Here there is an 
"Occam's razor" problem: the more free parameters a model has, 
the smaller the data error ED it can achieve. So we cannot simply 
choose the architecture with smallest data error. That would lead 
us to an overcomplex network that generalizes poorly. The use of 
weight decay does not fully alleviate this problem; networks with 
too many hidden units still generalize worse, even if weight decay 
is used (see Section 4). 

2. Objective criteria for setting the decay rate a. As in the choice of A 
above, there is an "Occam's razor" problem: a small value of a 
in equation 1.3 allows the weights to become large and overfit the 
noise in the data. This leads to a small value of the data error E D  
(and a small value of M ) ,  so we cannot base our choice of a only on 
ED or M.  The Bayesian solution presented here can be implemented 
on-line, that is, it is not necessary to do multiple learning runs with 
different values of a in order to find the best. 

3. Objective choice of regularizing function Ew. 

4. Objective criteria for choosing between a neural network solution and a 
solution using a different learning or interpolation model, for example, 
splines or radial basis functions. 

1.2 The Probability Connection. Tishby et al. (1989) introduced a 
probabilistic view of learning that is an important step toward solving the 
problems listed above. The idea is to force a probabilistic interpretation 
onto the neural network technique so as to be able to make objective 
statements. This interpretation does not involve the addition of any new 
arbitrary functions or parameters, but it involves assigning a meaning to 
the functions and parameters that are already used. 

My work is based on the same probabilistic framework, and extends 
it using concepts and techniques adapted from Gull and Skilling's (Gull 
1989) Bayesian image reconstruction methods. This paper also adopts 
a shift in emphasis from Tishby et al.'s paper. Their work concentrated 
on predicting the average generalization ability of one network trained 
on a task drawn from a known prior ensemble of tasks. This is called 
forward probability. In this paper the emphasis will be on quantifying the 
relative plausibilities of many alternative solutions to an interpolation or 
classification task; that task is defined by a single data set produced by 
the real world, and we do not know the prior ensemble from which the 
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task comes. This is called inverse probability. This paper avoids using 
the language of statistical physics, in order to maintain wider readability, 
and to avoid concepts that would sound strange in that language; for 
example, ”the probability distribution of the temperature” is unfamiliar 
in physics, but “the probability distribution of the noise variance’’ is its 
innocent counterpart in literal terms. 

Let us now review the probabilistic interpretation of network learning. 

0 Likelihood. A network with specified architecture A and connections 
w is viewed as making predictions about the target outputs as a 
function of input x in accordance with the probability distribution: 

where Z,(P) = Jdt exp(-PE). E is the error for a single datum, 
and P is a measure of the presumed noise included in t. If E is the 
quadratic error function then this corresponds to the assumption 
that t includes additive gaussian noise with variance u‘, = l/P. 

0 Prior. A prior probability is assigned to alternative network con- 
nection strengths w, written in the form: 

where ZW = Jdkw exp(-aEw). Here a is a measure of the char- 
acteristic expected connection magnitude. If Ew is quadratic as 
specified in equation 1.2 then weights are expected to come from 
a gaussian with zero mean and variance o& = l / a .  Alternative 
“regularizers” R (each using a different energy function Ew) im- 
plicitly correspond to alternative hypotheses about the statistics of 
the environment. 

0 The posterior probability of the network connections w is then 

(1.6) 

where Z M ( ~ ,  P )  = Jdkw exp(-aEw-PED). Notice that the exponent 
in this expression is the same as (minus) the objective function M 
defined in equation 1.3. 

So under this framework, minimization of M = a E w  + BED is identi- 
cal to finding the (locally) most probable parameters WMP; minimization 
of ED alone is identical to finding the maximum likelihood parameters 
WML. Thus an interpretation has been given to backpropagation’s en- 
ergy functions ED and Ew, and to the parameters a and P. It should be 
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emphasized that "the probability of the connections w" is a measure of 
plausibility that the model's parameters should have a specified value w; 
this has nothing to do with the probability that a particular algorithm 
might converge to w. 

This framework offers some partial enhancements for backprop meth- 
ods: The work of Levin et al. (1989) makes it possible to predict the aver- 
age generalization ability of neural networks trained on one of a defined 
class of problems. However, it is not clear whether this will lead to a 
practical technique for choosing between alternative network architec- 
tures for real data sets. 

Le Cun ef al. (1990) have demonstrated how to estimate the "saliency" 
of a weight, which is the change in M when the weight is deleted. They 
have used this measure successfully to simplify large neural networks. 
However no stopping rule for weight deletion was offered other than 
measuring performance on a test set. 

Also Denker and Le Cun (1991) demonstrated how the Hessian of M 
can be used to assign error bars to the parameters of a network and to 
its outputs. However, these error bars can be quantified only once ,6 is 
quantified, and how to do this without prior knowledge or extra data 
has not been demonstrated. In fact p can be estimated from the training 
data alone. 

2 Review of Bayesian Regularization and Model Comparison ___ 

In the companion paper (MacKay 1992a) it was demonstrated how the 
control parameters a and /3 are assigned by Bayes, and how alternative 
interpolation models can be compared. It was noted there that it is not 
satisfactory to optimize a and p by finding the joint maximum likelihood 
value of w, a,  p; the likelihood has a skew peak whose maximum is not 
located at the most probable values of the control parameters. MacKay 
(1992a) also reviewed how the Bayesian choice of a and ,B is neatly ex- 
pressed in terms of a measure of the number of well-determined parame- 
ters in a model, y. However that paper assumed that M(w) has only one 
significant minimum that was well approximated as quadratic. [All the 
interpolation models discussed in MacKay (1992a) can be interpreted as 
two-layer networks with a fixed nonlinear first layer and adaptive linear 
second layer.] In this section I briefly review the Bayesian framework, 
retaining that assumption. The following section will then discuss how 
the framework can be modified to handle neural networks, where the 
landscape of M(w) is certainly not quadratic. 

2.1 Determination of a and P. By Bayes' rule, the posterior proba- 
bility for these parameters is 

(2.1) 
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Now if we assign a uniform prior to (a,,@, the quantity of interest for 
assigning preferences to (a,P) is the first term on the right-hand side, 
the evidence for a ,  p, which can be written as2 

where ZM and ZW were defined earlier and ZD = JdNDe-BEo, 
Let us use the simple quadratic energy functions defined in equations 

1.1 and 1.2. This makes the analysis easier, but more complex cases can 
still in principle be handled by the same approach. Let the number of 
degrees of freedom in the data set, that is, the number of output units 
times the number of data pairs, be N, and let the number of free parame- 
ters, that is, the dimension of w, be k. Then we can immediately evaluate 
the gaussian integrals ZD and ZW: ZD = ( 2 ~ / @ ) ~ / ~ ,  and ZW = ( 2 7 ~ / a ) ~ / ~ .  
NOW we want to find Z M ( ~ ,  P )  = Jdkw exp[-M(w, a,  P) ] .  Supposing for 
now that M has a single minimum as a function of w, at WMP, and as- 
suming we can locally approximate M as quadratic there, the integral ZM 
is approximated by 

ZM N e-M(WMF’) (2a)k/2det-’/2A (2.3) 

where A = VVM is the Hessian of M evaluated at WMP. 
The maximum of P( D I a ,  p, A, R) has the following useful properties: 

(2.4) 
(2.5) 

where y is the effective number of parameters determined by the data, 

(2.6) 

where A, are the eigenvalues of the quadratic form @ED in the natural 
basis of Ew. 

2.2 Comparison of Different Models. To rank alternative architec- 
tures and penalty functions Ew in the light of the data, we simply evaluate 
the evidence, P(D 1 d,R), which appeared as the normalizing constant 
in equation 2.1. Integrating the evidence for (a ,  P), we have: 

P ( D  I A, R) = 1 P ( D  I a,  P, A, RIP(&,  P )  da dP (2.7) 

The evidence is the Bayesian’s transportable quantity for comparing mod- 
els in the light of the data. 

2The same notation, and the same abuses thereof, will be used as in MacKay (1992a). 
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3 Adapting the Framework 

For neural networks, M(w) is not quadratic. Indeed it is well known that 
M typically has many local minima. And if the network has a symmetry 
under permutation of its parameters, then we know that M(w) must 
share that symmetry, so that every single minimum belongs to a family 
of symmetric minima of M. For example, if there are H hidden units in 
a single layer then each nondegenerate minimum is in a family of size 
g = H! 2ff. Now it may be the case that the significant minima of M 
are locally quadratic, so we might be able to evaluate ZM by evaluating 
equation 2.3 at each significant minimum and adding up the ZMS; but the 
number of those minima is unknown, and this approach to evaluating 
Z M  would seem dubious. 

Luckily, however, we do not actually want to evaluate ZM. We would 
need to evaluate ZM in order to assign a posterior probability over al ,f? 
for an entire model, and to evaluate the evidence for alternative entire 
models. This is not quite what we wish to do: when we use a neural 
network to perform a mapping, we typically implement only one neural 
network at a time, and this network will have its parameters set to a 
particular solution of the learning problem. Therefore, the alternatives we 
wish to rank are the different solutions of the learning problem, that is, 
the different minima of M. We would want the evidence as a function 
of the number of hidden units only if we were somehow able to simul- 
taneously implement the entire posterior ensemble of networks for one 
number of hidden units. Similarly, we do not want the posterior over a,  /3 
for the entire posterior ensemble; rather, it is reasonable to allow each 
solution (each minimum of M) to choose its own optimal value for these 
parameters. The same method of chopping up a complex model space 
is used in the unsupervised classification system, Autoclass (Hanson et 
al. 1991). 

Having adopted this slight shift in objective, it turns out that to set 
a and P and to compare alternative solutions to a learning problem, the 
integral we now need to evaluate is a local version of ZM. Assume that 
the posterior probability consists of well-separated islands in parameter 
space each centered on a minimum of M. We wish to evaluate how 
much posterior probability mass is in each of these islands. Consider a 
minimum located at w*, and define a solution S,. as the ensemble of 
networks in the neighborhood of w*, and all symmetric permutations of 
that ensemble. Let us evaluate the posterior probability for alternative 
soIutions Sw*, and the parameters a and P: 

where g is the permutation factor, and 



456 David J. C. MacKay 

where the integral is performed only over the neighborhood of the min- 
imum at w*. I will refer to the quantity g[ZE(w*, a,  @)/&(a)ZD(@)] as 
the evidence for a, P, S,. . The parameters cr and P will be chosen to max- 
imize this evidence. Then the quantity we want to evaluate to compare 
alternative solutions is the evidence3 for Sw., 

This paper uses the gaussian approximation for Zt :  

where A = VVM is the Hessian of M evaluated at w*. For general a 
and P this approximation is probably unacceptable; however, we need 
it only to be accurate for the small range of a and @ close to their most 
probable value. The regime in which this approximation will definitely 
break down is when the number of constraints, N ,  is small relative to the 
number of free parameters, k. For large N / k  the central limit theorem 
encourages us to use the gaussian approximation (Walker 1967). It is a 
matter for further research to establish how large N / k  must be for this 
approximation to be reliable. 

What obstacles remain to prevent us from evaluating the local Z t ?  
We need to evaluate or approximate the inverse Hessian of M, and we 
need to evaluate or approximate its determinant and/or trace (MacKay 
1992a). 

Denker and Le Cun (1991) and Le Cun et aZ. (1990) have already dis- 
cussed how to approximate the Hessian of ED for the purpose of evaluat- 
ing weight saliency and for assigning error bars to weights and network 
outputs. The Hessian can be evaluated in the same way that backpropa- 
gation evaluates VED (see Bishop 1992 for a complete algorithm and the 
appendix of this paper for a useful approximation). Alternatively A can 
be evaluated by numerical methods, for example second differences. A 
third option: if variable metric methods are used to minimize M instead 
of gradient descent, then the inverse Hessian is automatically generated 
during the search for the minimum. It is important, for the success of 
this Bayesian method, that the off-diagonal terms of the Hessian should 
be evaluated. Denker et aZ.'s method can do this without any additional 
complexity. The diagonal approximation is no good because of the strong 
posterior correlations in the parameters. 

3Bayesian model comparison is performed by evaluating and comparing the evi- 
dence for alternative models. Gull and Skilling defined the evidence for a model 3-1 
to be P ( D  I 1-I). The existence of multiple minima in neural network parameter space 
complicates model comparison. The quantity in equation 3.2 is not P ( D  I S,. , A, 72) 
(it includes the prior for S,. I A, R), but I have called it the evidence because it is the 
quantity we should evaluate to compare alternative solutions with each other and with 
other models. 
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4 Demonstration 

This demonstration examines the evidence for various neural net solu- 
tions to a small interpolation problem, the mapping for a two joint robot 
arm, 

(el, 0,) + (ya,yb) = rl cos 6J1 + r2 cos(O1 + 02), r1 sin B1 + r2 sin(& + 0,) 

For the training set I used rl = 2.0 and r;! = 1.3, random samples from a 
restricted range of (el, 0,) were made, and gaussian noise of magnitude 
0.05 was added to the outputs. The neural nets used had one hidden 
layer of sigmoid units and linear output units. During optimization, 
the regularizer (equation 1.2) was used initially, and an alternative reg- 
ularizer was introduced later; ,O was fixed to its true value (to enable 
demonstration of the properties of the quantity y), and a was allowed to 
adapt to its locally most probable value. 

Figure 1 illustrates the performance of a typical neural network trained 
in this way. Each output is accompanied by error bars evaluated using 
Denker et aZ.'s method, including of-diagonal Hessian terns.  If ,O had not 
been known in advance, it could have been inferred from the data using 
equation 2.5. For the solution displayed, the model's estimate of ,O in 
fact differed negligibly from the true value, so the displayed error bars 
are the same as if ,O had been inferred from the data. 

Figure 2 shows the data misfit versus the n w b e r  of hidden units. 
Notice that, as expected, the data error tends to decrease monotonically 
with increasing number of parameters. Figure 3 shows the error of these 
same solutions on an unseen test set, which does not show the same 
trend as the data error. The data misfit cannot serve as a criterion for 
choosing between solutions. 

Figure 4 shows the evidence for about 100 different solutions using 
different numbers of hidden units. Notice how the evidence maximum 
has the characteristic shape of an "Occam hill" - steep on the side with 
too few parameters, and shallow on the side with too many parame- 
ters. The quadratic approximations break down when the number of 
parameters becomes too big compared with the number of data points. 

Figure 5 introduces the quantity y, discussed in MacKay (1992a), the 
number of well-measured parameters. In cases where the evaluation of 
the evidence proves difficult, it may be that y will serve as a useful tool. 
For example, sampling theory predicts that the addition of redundant 
parameters to a model should reduce x& by one unit per well-measured 
parameter; a stopping criterion could detect the point at which, as pa- 
rameters are deleted, x; started to increase faster than with gradient l 
with decreasing y (Figure 6).* This use of y requires prior knowledge of 
the noise level P; that is why ,O was fixed to its known value for these 
demonstrations. 

4This suggestion is closely related to Moody's (1991) "generalized prediction error," 
GPE = (& + 2 7 ) / N .  
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P .  I 

Figure 1: Typical neural network output (inset - training set). This is the out- 
put space (y,,yb) of the network. The target outputs are displayed as small 
x's, and the output of the network with 1u error bars is shown as a a dot sur- 
rounded by an ellipse. The network was trained on samples in two regions in 
the lower and upper half planes (inset). The outputs illustrated here are for 
inputs extending a short distance outside the training regions, and bridging 
the gap between them. Notice that the error bars get much larger around the 
perimeter. They also increase slightly in the gap between the training regions. 
These pleasing properties would not have been obtained had the diagonal Hes- 
sian approximation of Denker and Le Cun (1991) been used. The above solution 
was created by a three layer network with 19 hidden units. 

Now the question is how good a predictor of network quality the 
evidence is. The fact that the evidence has a maximum at a reasonable 
number of hidden units is promising. A comparison with Figure 3 shows 
that the performance of the solutions on an unseen test set has similar 
overall structure to the evidence. However, Figure 7 shows the evidence 
against the performance on a test set, and it can be seen that a significant 
number of solutions with poor evidence actually perform well on the test 
set. Something is wrong! It is time for a discussion of the relationship 
between the evidence and generalization ability. We will return later to 
the failure in Figure 7 and see that it is rectified by the development of 
new, more probable regularizers. 
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Figure 2: Data error versus number of hidden units. Each point represents 
one converged neural network, trained on a 200 i/o pair training set. Each 
neural net was initialized with different random weights and with a different 
initial value of u& = 1/a. The two point-styles correspond to small and large 
initial values for UW. The error is shown in dimensionless x2 units such that 
the expectation of error relative to the truth is 400 f 20. The solid line is 400 - k, 
where k is the number of free parameters. 

4.1 Relation to "Generalization Error". What is the relationship be- 
tween the evidence and the generalization error (or its close relative, 
cross-validation)? A correlation between the two is certainly expected. 
But the evidence is not necessarily a good predictor of generalization er- 
ror (see discussion in MacKay, 1992a). First, as illustrated in Figure 8, the 
error on a test set is a noisy quantity, and many data have to be devoted 
to the test set to get an acceptable signal-to-noise ratio. Furthermore, 
imagine that two models have generated solutions to an interpolation 
problem, and that their two most probable interpolants are completely 
identical. In this case, the generalization error for the two solutions must 
be the same, but the evidence will not in general be the same: typically, 
the model that was a priori more complex will suffer a larger Occam 
factor and will have smaller evidence. Also, the evidence is a measure of 
plausibility of the whole ensemble of networks about the optimum, not 
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Figure 3: Test error versus number of hidden units. The training set and test 
set both had 200 data points. The test error for solutions found using the first 
regularizer is shown in dimensionless x2 units such that the expectation of error 
relative to the truth is 400 f 20. 

just the optimal network. Thus, there is more to the evidence than there 
is to the generalization error. 

4.2 What If the Bayesian Method Fails? I do not want to dismiss 
the utility of the generalization error: it can be important for detecting 
failures of the model being used. For example, if we obtain a poor 
correlation between the evidence and the generalization error, such that 
Bayes fails to assign a strong preference to solutions that actually perform 
well on test data, then we are able to detect and attempt to correct such 
failures. 

A failure indicates one of two things, and in either case we are able to 
learn and improve: either numerical inaccuracies in the evaluation of the 
probabilities caused the failure, or else the alternative models that were 
offered to Bayes were a poor selection, ill-matched to the real world 
(for example, using inappropriate regularizers). When such a failure 
is detected, it prompts us to examine our models and try to discover 
the implicit assumptions in the model that the data did not agree with; 
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Figure 4: Log evidence for solutions using the first regularizer. For each solu- 
tion, the evidence was evaluated. Notice that an evidence maximum is achieved 
by neural network solutions using 10, 11, and 12 hidden units. For more than 
-19 hidden units, the quadratic approximations used to evaluate the evidence 
are believed to break down. The number of data points N is 400 (i.e., 200 i/o 
pairs); cf. number of parameters in a net with 20 hidden units = 102. 

alternative models can be tried until one is found that makes the data 
more probable. 

We have just met exactly such a failure. Let us now establish what 
assumption in our model caused this failure and learn from it. Note that 
this mechanism for human learning is not available to those who just use 
the test error as their performance criterion. Going by the test error alone, 
there would have been no indication that there was a serious mismatch 
between the model and the data. 

4.3 Back to the Demonstration: Comparing Different Regularizers. 
The demonstrations thus far used the regularizer of equation 1.2. This is 
equivalent to a prior that expects all the weights to have the same charac- 
teristic size. This is actually an inconsistent prior: the input and output 
variables and hidden unit activities could all be arbitrarily rescaled; if the 
same mapping is to be performed (a simple consistency requirement), 
such transformations of the variables would imply independent rescaling 
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Figure 5: The number of well-determined parameters. This figure displays 
a function of k, for the same network solutions as iR Figure 4. 

as 

of the weights to the hidden layer and to the output layer. Thus the scales 
of the two layers of weights are unrelated, and it is inconsistent to force 
the characteristic decay rates of these different classes of weights to be 
the same. This inconsistency is the major cause of the failure illustrated 
in Figure 7. All the networks deviating substantially from the desired trend have 
weights to the output layer far larger than the weights to the input layer; this 
poor match to the model implicit in the regularizer causes the evidence 
for those solutions to be small. 

This failure enables us to progress with insight to new regularizers. 
The alternative that I now present is a prior that is not inconsistent in 
the way explained above, so there are theoretical reasons to expect it to 
be "better." However, we will allow the data to choose, by evaluating 
the evidence for solutions using the new prior; we will find that the new 
prior is indeed more probable. 

The second prior has three independent regularizing constants, corre- 
sponding to the characteristic magnitudes of the weights in three differ- 
ent classes c, namely hidden unit weights, hidden unit biases, and output 
weights and biases (see Fig. 9). The term aEw is replaced by CcaCE&, 
where Eh = CiEc 4 / 2 .  Nowlan (1991) has used a similar prior modeling 
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Figure 6 Data misfit versus y. This figure shows & against y, and a line of 
gradient -1. Toward the right, the data's misfit & is reduced by 1 for every 
well-measured parameter. When the model has too few parameters, however 
(toward the left), the misfit gets worse at a greater rate. 

weights as coming from a gaussian mixture, and used Bayesian reestima- 
tion techniques to update the mixture parameters; he found such a model 
was good at discovering elegant solutions to problems with translation 
invariances. 

Using the second prior, each regularizing constant is independently 
adapted to its most probable value by evaluating the number of well- 
measured parameters T~ associated with each regularizing function, and 
finding the optimum where 2a,Eb = -ye. The increased complexity of this 
prior model is penalized by an Occam factor for each new parameter ac 
(see MacKay 1992a). Let me preempt questions along the lines of "why 
didn't you use four weight classes, or nonzero means?" - any other 
way of assigning weight decays is just another model, and you can try 
as many as you like; by evaluating the evidence you can then find out 
what preference the data have for the alternative decay schemes. 

New solutions have been found using this second prior, and the ev- 
idence evaluated. The evidence for these new solutions with the new 
prior is shown in Figure 10. Notice that the evidence has increased com- 
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Figure 7: Log evidence versus test error for the first regularizer. The desired 
correlation between the evidence and the test error has negative slope. A signif- 
icant number of points on the lower left violate this desired trend, so we have a 
failure of Bayesian prediction. The points that violate the trend are networks in 
which there is a significant difference in typical weight magnitude between the 
two layers. They are all networks whose learning was initialized with a large 
value of UW. The first regularizer is ill-matched to such networks, and the low 
evidence is a reflection of this poor prior hypothesis. 

pared to the evidence for the first prior. For some solutions the new prior 
is more probable by a factor of lo3'. 

Now the crunch: does this more probable model make good predic- 
tions? The evidence for the second prior is shown against the test error in 
Figure 11. The correlation between the two is greatly improved. Notice 
furthermore that not only is the second prior more probable, the best test 
error achieved by solutions found using the second prior is slightly better 
than any achieved using the first prior, and the number of good solutions 
has increased substantially. Thus the Bayesian evidence is a good predic- 
tor of generalization ability, and the Bayesian choice of regularizers has 
enabled the best solutions to be found. 
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Figure 8: Comparison of two test errors. This figure illustrates how noisy a 
performance measure the test error is. Each point compares the error of a 
trained network on two different test sets. Both test sets consist of 200 data 
points from the same distribution as the training set. 

5 Discussion 

The Bayesian method that has been presented is well-founded theoret- 
ically, and it works practically, though it remains to be seen how this 
approach will scale to larger problems. For a particular data set, the 
evaluation of the evidence has led us objectively from an inconsistent reg- 
ularizer to a more probable one. The evidence is maximized for a sensible 
number of hidden units, showing that Occam’s razor has been success- 
fully embodied with no ad hoc terms. Furthermore the solutions with 
greatest evidence perform better on a test set than any other solutions 
found. I believe there is currently no other technique that could reliably 
find and identify better solutions using only the training set. Essential 
to this success was the simultaneous Bayesian optimization of the three 
regularizing constants (decay terms) a,. Optimization of these param- 
eters by any orthodox search technique such as cross-validation would 
be laborious; if there were many more than three regularizing constants, 
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Figure 9: The three classes of weights under the second prior. (1) Hidden unit 
weights. (2) Hidden unit biases. (3) Output unit weights and biases. The 
weights in one class c share the same decay constant ac. 

as could easily be the case in larger problems, it is hard to imagine any 
such search being po~sible.~ 

This brings up the question of how these Bayesian calculations scale 
with problem size. In terms of the number of parameters k, calculation of 
the determinant and inverse of the Hessian scales as k3. Note that this is 
a computation that needs to be carried out only a small number of times 
compared with the immense number of derivative calculations involved 
in a typical learning session. However, for large problems it may be too 
demanding to evaluate the determinant of the Hessian. If this is the case, 
numerical methods are available to approximate the determinant or trace 
of a matrix in k2 time (Skilling, 1989). 

5.1 Application to Classification Problems. This paper has thus far 
discussed the evaluation of the evidence for backprop networks trained 
on interpolation problems. Neural networks can also be trained to per- 

5Radford Neal (personal communication) has pointed out that it is possible to eval- 
uate the gradient of a validation error with respect to parameters such as {ac}, using 
aEv,1/8ac = a E v a l / a W ~ ~ . a W M ~ / a a c .  The first quantity could be evaluated by backprop, 
and the second term could be found within the quadratic approximation which gives 
a w M p / a a ,  = A-’IcwMp, where I, is the identity matrix for the weights regularized 
by a. and zero elsewhere. Alternatively, Radford Neal has suggested that the gradi- 
ents OEv,I /Oa, could be more efficiently calculated using “recurrent backpropagation” 
(Pineda 1989), viewing w as the vector of activities of a recurrent network, and WMP as 
the fixed point whose error E,I we wish to minimize. 
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Figure 10: Log evidence versus number of hidden units for the second prior. 
The different point styles correspond to networks with learning initialized with 
small and large values of UW; networks previously trained using the first reg- 
ularizer and subsequently trained on the second regularizer; and networks in 
which a weight symmetry was detected (in such cases the evidence evaluation 
is possibly less reliable). 

form classification tasks. A future publication (MacKay 1992b) will demon- 
strate that the Bayesian framework for model comparison can be applied 
to these problems too. 

5.2 Relation to V-C Dimension. Some papers advocate the use of 
V-C dimension (Abu-Mostafa 1990a) as a criterion for penalizing over- 
complex models (Abu-Mostafa 1990b; Lee and Tenorio 1991). V-C di- 
mension is most often applied to classification problems; the evidence, 
on the other hand, can be evaluated equally easily for interpolation and 
classification problems. V-C dimension is a worst case measure, so it 
yields different results from Bayesian analysis (Haussler et al. 1991). For 
example, V-C dimension is indifferent to the use of regularizers like equa- 
tion 1.2, and to the value of a, because the use of such regularizers does 
not rule out absolutely any particular network parameters. Thus V-C 
dimension assigns the same complexity to a model whether or not it is 
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Figure 11: Log evidence for the second prior versus test error. The correlation 
between the evidence and the test error for the second prior is very good. Note 
that the largest value of evidence has increased relative to Figure 7, and the 
smallest test error has also decreased. 

regularized.6 So it cannot be used to set regularizing constants a or to 
compare alternative regularizers. In contrast, the preceding demonstra- 
tions show that careful objective choice of regularizer and a is essential 
for the best solutions to be obtained. 

Worst case analysis has a complementary role alongside Bayesian 
methods. Neither can substitute for the other. 

5.3 Future Tasks. Further work is needed to formalize the relation- 
ship of this framework to the pragmatic model comparison technique 
of cross-validation. Moody's (1991) work on "generalized prediction er- 
ror" (GPE) is an interesting contribution in this direction. His sampling 
theory approach predicts that the generalization error, in x2 units, will 
be (& + 2y) lN.  However, I have evaluated the GPE for the interpo- 
lation models in this paper's demonstration, and found the correlation 

6However, E. Levin (personal communication) has mentioned that a measure of 
"effective V-C dimension" of a regularized model is being developed. In some cases 
this measure is identical to 7,  equation 2.6. 
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between GPE and the actual test error was poor. More work is needed 
to understand this. 

The gaussian approximation used to evaluate the evidence breaks 
down when the number of data points is small compared to the number 
of parameters. For the model problems I have studied so far, the gaussian 
approximation seemed to break down significantly for N / k  < 3 f 1. It is 
a matter for further research to characterize this failure and investigate 
techniques for improving the evaluation of the integral Zb, for example 
the use of random walks on M in the neighborhood of a solution. 

It is expected that evaluation of the evidence should provide an objec- 
tive rule for deciding whether a network pruning or growing procedure 
should be stopped, but a careful study of this idea has yet to be per- 
formed. 

It will be interesting to see the results of evaluating the evidence for 
networks applied to larger real-world problems. 

6 Appendix: Numerical Methods 

6.1 Quick and Dirty Version. The three numerical tasks are auto- 
matic optimization of N, and p, calculation of error bars, and evaluation 
of the evidence. I will describe a cheap approximation for solving the 
first of these tasks without evaluating the Hessian. If we neglect the 
distinction between well-determined and poorly determined parameters, 
we obtain the following update rules for CI and P: 

O, := kC/2EE, 
p := N/2ED 

If you want an easy-to-program taste of what a Bayesian framework can 
offer, try using this procedure to update your decay terms. 

6.2 Hessian Evaluation. The Hessian of M, A, is needed to evaluate 
y (which relates to TraceA-I), to evaluate the evidence (which relates to 
det A), and to assign error bars to network outputs (using A-’1. 

I used two methods for evaluating A: (1) an approximate analytic 
method and ( 2 )  second differences. The approximate analytic method 
was, following Denker et al., to use backprop to obtain the second deriva- 
tives, neglecting terms in f”, where f is the activation function of a neu- 
ron. The Hessian is built up as a sum of outer products of gradient 
vectors: 

where gy = dy;(xm)/dw. Unlike Denker et al., I did not ignore the off- 
diagonal terms; the diagonal approximation is not good enough! For 
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the evaluation of y the two methods gave similar results, and either ap- 
proach seemed satisfactory. However, for the evaluation of the evidence, 
the approximate analytic method failed to give satisfactory results. The 
”Occam factors” are very weak, scaling only as log N, and the above ap- 
proximation apparently introduces systematic errors greater than these. 
The reason that the evidence evaluation is more sensitive to errors than 
the y evaluation is because y is related to the sum of eigenvalues, whereas 
the evidence is related to the product; errors in small eigenvalues jeop- 
ardize the product more than the sum. I expect an exact analytic evalua- 
tion of the second derivatives (Bishop 1992) would resolve this. To save 
programming effort I instead used second differences, which is compu- 
tationally more demanding (- kN backprops) than the analytic approach 
(w N backprops). There were still problems with errors in small eigenval- 
ues, but it was possible to correct these errors, by detecting eigenvalues 
that were smaller than theoretically permitted. 

6.3 Demonstrations. The demonstrations were performed as follows: 
Initial weight configuration: random weights drawn from a gaussian 
with crw = 0.3. Optimization algorithm for M(w): variable metric meth- 
ods, using code from Press et al. (1988), used several times in sequence 
with values of the fractional tolerance decreasing from to lo-’. Ev- 
ery other loop, the regularizing constants ac were allowed to adapt in 
accordance with the reestimation formula: 

aC := yC/2E& (6.2) 

6.4 Precaution. When evaluating the evidence, care must be taken to 
verify that the permutation term g is appropriately set. It may be the 
case (probably mainly in toy problems) that the regularizer makes two 
or more hidden units in a network adopt identical connection values; 
alternatively, some hidden units might switch off, with all weights set 
to zero; in these cases the permutation term should be smaller. Also 
in these cases, it is likely that the quadratic approximation will perform 
badly (quartic rather than quadratic minima are likely), so it is preferable 
to automate the deletion of such redundant units. 
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